Improving cache behavior of dynamically allocated data structures

Dan N. Truong Francois Bodin André Seznec
dtruong@irisa.fr bodin@irisa.fr seznec@irisa.fr
IRISA - INRIA

Campus de Beaulieu
35042 Rennes, CEDEX
France

Abstract [2, 17] (code transformations) or array padding [1] (data
layout techniques) to improve locality.

Poor data layout in memory may generate weak datalo- However generalist applications may also require high
cality and poor performance. Code transformations such as performance and can suffer from poor cache behavior. In
loop blocking or interchanging and array padding have ad- this paper, we focus on applications using heterogeneous
dressed this issue for scientific applications. However manydata structures. Instances of structures are often allocated
generalist applications do not use data arrays, but dynami- dynamically, either organized as self-referencing data struc-
cally allocated heterogeneous data structures. tures (lists, B-trees, quad trees...), or as arrays of structures.

In this paper, we explore two data layout techniques for Such applications will not benefit from the techniques de-
dynamically allocated data structures: field reorganization, veloped for arrays to improve cache locality. Data addresses
and instance interleaving. The application of these tech- are not computed using loop indexes, so loop transforma-
niqgues may be guided by program profiling. This allows tions cannot be used. Code transformations are unlikely to
significant cache behavior improvements on some applica-generate stride one memory accesses for instances of struc-
tions. tures.

To support instance interleaving, we developed a spe- In this paper, we explore two possible data layout tech-
cific memory allocation library called ialloc. An ialloc-like niques to improve locality for heterogeneous data structures
library may be of great help in a toolbox for performance allocated dynamically.

tuning of general-purpose applications. _ o)
¢ Field reorganization : fields of a data structure often

referenced together are grouped together in the data

1. Introduction structure declaration to fit in the same cache line.

¢ Instance interleaving : identical fields of different in-

Recent studies have analyzed the efficiency of caches. stances of a data structure often referenced together
If cache usage was optimal, only small cache sizes would are grouped together dynamically. That way, rarely
be necessary [11], and the memory bandwidth necessary ysed fields are moved away from frequently used
would be kept low [12]. However, in practice, caches are fields, and won'’t be loaded in the cache.

greatly under-exploited [4], and memory bandwidth will be

a limiting factor for processor performance because of im- The C language does not allow direct implementation of
ited chip pin-out [3]. Meanwhile, all efforts to better exploit the second data layout optimization. This leads us to de-
effective cache space and available memory bandwidth arevelop a dedicated allocation library calledloc to support
worth to be explored. Changing the reference patterns tothe interleaving optimization. The usagdaifoc guided by
memory locations modifies cache behavior. These changegrofiling is shown to allow significant performance gain on
can either be done by reordering the memory accesses of theome applications using extensively dynamically allocated
application through code transformations, or by changing data structures. Thialloc library might be a very valuable
the layout of referenced data in memory. These techniquespiece in a toolbox for performance tuning general applica-
have been widely explored for numerical scientific appli- tions.

cations. Program developers can rely on efficient cache- The remainder of the paper is organized as follows. Sec-
conscious numeric libraries [6] or on loop transformations tion 2 presents in more details field reorganization and in-

www.manaraa.com

stance interleaving. Section 3 presents the dedicated mem Original declaration : Field reorganization :
ory allocation libraryialloc. Section 4 shows our data

: : i : Struct S { Struct S {
Iayout_expen_mentatlon _usmlglloc. We overview related TypeA A: TypeA A:
works in section 5. Section 6 concludes this study. TypeB B;><Typec C;

TypeC C; TypeB B;
TypeD D; TypeD D;
2. Data layout
Struct S * Pt; Struct S * Pt;

Ideally, data elements most often referenced together
should lie into the same cache blocks [16, 21]. Further-
more, memory blocks frequently used together must map e =
into distinct cache sets. To achieve this one would like to A[B[c[D] memory [A[c|B[D
take advantage of properties of the programs and of the date
structures to choose the data layout.

Locality properties can be found for dynamically allo-
cated instances of data structures because the programmar Figure 1. Field reorganization is done by
ages instances anonymously using pointers. A data struc- changing the declaration order of the fields
ture is generally made of a small number of fields (fromtwo of the structure.
to a few dozens). Every instance holds these fields. Most
instances are referenced through the same code portions

Therefore, the dominant reference patterns are usually thechange the cache line reference pattern. To solve this, field

same for most instances of the structure. The dominatingyegrganization can be combined with instance interleaving.
reference pattern is usually caused by a very small portion

of the program [17]. A specific reference pattern only ob- 5 5 |nstance interleaving
served for a few instances of the structure can be ignored. It
will not influence overall program performance. Therefore

to improve the performance of a program, we must adapt the

layout of the instances in memory to the dominating refer- .o cne jine. Instead of filling a memory block with rarely

ence patterns. used fields of the instance, one may want to fill it with

In this section, we describe field reorganization and in- g0 ently used fields of other instances. Therefore, these
stance interleaving, two techniques that can be used to mOdﬁeIds must be laid out contiguously in memory

ify the layout of data structures in memory.

Instance of S Instance of S

The dominating reference pattern of a program often ac-
cesses only a few fields in each instance, not enough to fill a

Instance I1 Instance 12 Instance I3 Instance 14

alc[e[o] [alc/e[p] [Alcle[o [alclelD]
In many applications, the most active parts of the code

access only a few fields in each instance of a structure. Interleaving
These fields can be regrouped together to fit into the fewest
number of memory blocks.

2.1. Field reorganization

Figure 1 illustrates such a reorganization in C language ‘ﬂL TF
to regroup fieldsA andC'. The declaration of the data struc- “A‘C‘A‘C‘A‘C‘A c“‘ EB‘D‘B‘D‘B‘D‘B D
ture is just changed, modifying the memory layout of the ; Line size ‘ |
fields of the instances. We call this optimization field reor- ‘ Cache size
ganization.

Field reorganization can have a significant impact on Figure 2. Interleaving of identical fields of
cache performance if the structure spans over many cache many instances of a structure.
blocks. When an instance is referenced, fewer memory
blocks are loaded in the cache. This not only takes advan-
tage of cache line prefetching, it also reduces cache pollu- To achieve this, we propose to interleave the instances
tion. Repeated over many instances, this optimization aloneof the data structure as illustrated in Figure 2. We assume
can provide visible speedups. that the fieldsd andC are the most frequently used fields
Unfortunately, programs usually don’t use such large of the structure. We group them in the first chunk, while we
data structures. Therefore field reorganization alone be-groupB andD in the second chunk. The chunks,() of a
comes useless, because reorganizing the fields does ndew instances are grouped together to fill-up a cache block.

www.manaraa.com

Since they are more likely to be referenced than the second3. lalloc: an allocation library for instance
chunks B,D) , cache line reuse is likely to improve. interleaving

We actually interleave many more instances. We fill a
whole segment of memory at least as large as the cache size | siance interleaving is natural neither for declaration
with chunks @,C). Since these chunks are all likely to be “nor allocation for programming languages like C. More-

used, they sh<)uld not map to the same cache s_ets. Organlztiver, instance interleaving in likely to be used as a final per-
ing them contiguously in memory reduces the risk of cache ¢ ance tuning step of an application development: only
interference to eliminate conflict misses. minimum source code modification is then tolerated.

_ It has been shown that instances allocated at the same | order to assist the developer in using instance inter-
time tend to be used at the same time [10]. By interleaving 4ying in this final performance tuning step, we developed
together the frequently used chunks of instances allocated, specific allocation library, calledlloc. lalloc hides from
consecutively, we prevent interferences bet.ween these iNyhe user most of the complexity of instance interleaving
stances and we increase the chances of taking advantage ofianagement while its use incurs very limited and localized

cache line prefetching. source code modification.
In this section, we present the implementation ofittie
Cache line size . loc library and its current limitations.
3 == : = _a—
'Alc] Padi[int] B[D| Pad2[int] J/ 3.1. Implementation

Struct S { The data structures that need to be allocated iaithc
%gzé é’, are only those which are most frequently used and which
char Pad[Intl]; have also the most instances allocated.
TypeB B;
TypeD D; . .
char Pad2(Intl]; lalloc allocates arenas Our libraryialloc reserves and
} manages special areas in the heap called arenas for each

specific data structure it handles. An arena is a contiguous
portion of the heap reserved for the allocation of specific
data sizes. The concept of arenas has already been used in
the Gnu-C allocation library to improve the locality of the
library [10].

Different structures are likely to have different interleav-
ing parameters. Therefore, an arena only holds instances
Implementation through structure declaration In- of a single data structure. We interleave a sufficient num-
stance interleaving was not foreseen when programmingbel’ of frequently used chunks to fill the cache size, so the
languages were defined. Therefore, they do not provide an)ﬁize of the arena is a multiple of the cache size. Each arena
support for it. is managed independently with a small header holding its

However, in C language data structure declarations mayallocation table.
be tweaked to enable instance interleaving. Figure 3 illus-
trates this and how it affects the layout of an instance in Arena
memory (color code of the instances is the same as in Fig-

Figure 3. Interleaving is done by adding
padding in the data structure declarations.

ure 2). A padding array is inserted after each interleaved | | "% Free space ‘
Chlg]l'll(rofthe Structure (ChunKsl,C) and(B,D)) . A‘C‘A‘C‘A‘C‘ ‘B‘D‘B‘D‘B‘D‘ mf;en’jlgry
goal is to reuse the unused space within the padding 3 :
arrays to allocate and interleave the chunks of other in- ‘ /) /
Fields of an instance |
stances of the structure. Every chunk must have the same | | |
size to allow the compiler to manage address computation. Cache size
The set of least frequently used fields of the structure is di-
vided into several equally sized chunks as needed. Figure 4. Inner organization of an allocation
Allocation within the padding structure is not directly arena.
supported by the C language. The new memory allocation
library calledialloc, presented in the next section was de-
veloped for this purpose. Figure 4 illustrates this. The two chunksl, C') and

(B, D) of the structure are interleaved. The arenais alfost #define IndexS 0

twice the size of the cache. The data structure is padded #define ChunkSizeS sizeof(A)+sizeof(C
with arrays, each slightly smaller than the cache size. struct §
An arena usually holds a few thousand instances. There- struct S * A;
fore itis usually notlarge enough to accommodate all the in- int C;
Padi[IntlS];

stances of a structure. Thadloc library manages a chained

list of arenas for each interleaved data structure. More are- :2: gi
nas are allocated as needed. Each structure type is assigned Padé[lntIS]-
an index corresponding to its own chained lists of arenas. ¥ '
3.2. Using ialloc struct S *SPtr;

SPtr = ialloc(S,ChunkSizeS,IndexS);
SPt—~A = NULL;

if (..) SPtr—B= ..

ifree(SPtr);

To use thdalloc library, the programmer first modifies
the data structure declaration to reorganize the fields into
chunks and insert the padding arrays. Afterwards the user
replaces corresponding callsrmalloc() andfree() by calls
to ialloc() andifree(), ialloc’s allocation routines. Figure 6
shows the transformation necessary from the original code
sample shown in figure 5.

Figure 6. Sample optimized code.

struct § These two optimization steps cannot be directly hidden
struct S * A; in C, because allocation must be handled dynamically by a
!nt B; library while data structure layout and pointer arithmetic is
:2: g generated statically by the compiler.

}

Struct S *SP- Usage constraints The code transformation process

shown above is valid for recursive data structures (i.e. struc-
SPtr = (struct S *) malloc(sizeof(S)) tures (_)rggnlzed in chamed lists, trees_...). Howeve_r, some
SPtrsA = NULL: comp!lca'qons may arise, because static and dynamic layout
if () SPtr>B= .. optimizations must interact and C Language doesn't pro-
free(SPtr); vide any support for that. Therefore layout optimization
cannot be transparent to C programmer.
We list some limitations when usinglloc below:
Figure 5. Sample original code. > ialloc does not currently support arrays of data struc-
tures. The difficulty lies in how pointer arithmetic is done

Except for the calls tanallocandfree, all the references by the C compiler. Let's consider a reference to an element

to the structure are left unchanged. of an array of structure lik& ab[i]. A. Using our approach
To pass static structure layout information to the alloca- to interleave this structure would necessitate extensive cast-
tion library, we need to provide three argumentsatitoc(). ing to allow correct array pointer arithmetic. This would

We give the typeS of the structuré to tell it the size of ~ mean heavy code transformations.
the structure and to handle casting automatically, the size > Allocation of different types of structures at the same
ChunkSize$8f the interleaved chunks, and the indedexS malloc() call site cannot be handled directly, because our
chosen for that data structure type. library asks for an index for each structure type allocated.
Adding padding in the declaration of the data structure This problem happens whemalloc() is called within a
forces the compiler to generate correct addressing to the varwrapper function, for example when the programmer han-
ious fields of the padded structure. Tia#loc library hides dles structure allocation himself or when he checks the cor-
the memory management and pointer arithmetic necessaryectness of the allocation process. This is the case in the
to allocate non-contiguous chunks within the padding of the sources of the Gnu-C compiler. The wrapper function must
other instances. be removed before optimization.
1The header doesn’t need to be duplicated. > Freeing of different Struc.ture types ny the. Satiwe()
%jalloc() is actually adefine which accepts directly the data type to 1 he free() can be converted tdree() only if all instances
prevent the need to cast freed are allocated by thalloc library.

www.manaraa.com

> Interleaved structures cannot support assignations be-of the MACH OS kernel [7, 8], Raytrace, a program from
tween instances without compiler support. Fields must bethe Splash-2 parallel benchmark suite [22], and Radiosity, a

copied explicitly one by one, i.e , iP1 and P2 are point- program developed at INRIA by Meneveaux et al. [15].
ers to interleaved instances of a structurel’t = *P2;" Characteristics of these applications are further detailed
should be converted ta”l -+ A = P2 - A; P1 — B = below. For each application, we also present the optimiza-

P2 — B;.. This type of assignation is unlikely to be en- tions that were performed on the data layout.
countered in C, since it is legal only in ANSI-C compilers. > Health : “health 6 500"

HO\t/ve\k/)er'[l\tle enﬁouh?vteredl\? ﬁ++dptrr?grams lto |n|';|atllzre (f)?h Program simulating the Colombian health care manage-
Jects, but we can always overioad the equal operator ottne oyt A simulation of patients transfers between the hospi-

interleaved classes. ; n=6-1 ,n . .
>> Static allocation of interleaved structures should be tlfgiroi,tijgti:giaagreesug&i:lloageél(a);Iﬁ;g-?rgg;g;npei}tg;:&
Zﬁgf;%rs]lngfafagdgngi;?és t%zep:%;r:gtsc:asczige\;v;;tt:((:tient (patient’s data), angatient list(nodes of a chained
A solution is to)(lzonvé/rt the stétic instances of the structureh.St)' We interleave the Ias_t two data structures fields by
into dynamically allocated instances. However we never fields: those have the most instances and are most often ref-
met this difficulty in the experimentation we did, since static erenced. The program consumes 17MB of memory.
allocation is rarely mixed with dynamic allocation. > Tsp : “tsp 3276800" _ _
In our experiments, we found that the biggest difficulty Trav_elmg salesman proble_m s_olved using the closest point
with ourialloc library is its inadequation to handle directly heuristic. The problem size is the traversal of over 3.27
the allocation of arrays of structures. Their use is quite fre- Million cities. We interleave the only data structure used (a
quentin large applications. The usage of wrapper allocationduad-tree) by chunks of eight bytes. Doubles are alone, but

functions is also occasionally a nuisance. pointers are grouped two by two. The program uses 193MB
of memory.
4. Experimentation > Jigsaw : “echo 100jigsaw 100.out”

Solves a mathematical representation of a 100x100 2D-
jigsaw puzzle. Tiles are represented by a structure with 11
word-sized fields. Tiles are stored in a chained list. We in-
terleave the tiles field by field. The program uses 3.5MB of
memory.

4.1. The target architecture

The programs benchmarked in this section were run as
monoprocessor tasks on an SGI Origin 2000 with 195MHz . .,
R10000 processors. The L1 on-chip data cache is a 2 > Raytrace: ‘raytrace balls4.env”
way set-associative non-blocking cache of 32KB, with 328 Virtual image rendering using raytracing. We use the
lines. The L2 external cache has the same configuration buf@/ls4-env scene made of 7381 spheres reflecting on one

is 4MB. The local memory of the node is made of 128MB another and organized into a fractal shape. We modified
of SDRAM. the balls4.env file to add “hgridsize 17, to make the ap-

Statistics reported were gathered using SGpeedshop plication run longer. Many structures are used in this pro-

y gram. We interleaved the structumbjectfield by field and

package. It can count misses in all levels of the memor X) ;
hierarchy using hardware counters and computes an estiiN€ Structuresphereby regrouping S fields and separating

mation of the corresponding time penalties incurred. the last one. The program uses 40MB of memory.
> Radiosity : “radiosity -i tt.gra-ott-T 10-A 1 -E 0.001
4.2. Benchmark selection -N 1500 -s -m”
Virtual image rendering using hierarchical radiosity. The
Data layout optimizations are intended to provide per- Program is built to render extremely large scenes. The in-
formance gains on applications with poor data locality and Put is a scene made of 213 lightly furnished rooms, each
large working sets. SpecInt95 benchmarks for instance doOne is described in a separatt file. This program uses
not correspond to this class of applications. Therefore, Many structures. We interleave three structures field by
we gathered a few applications from different sources thatfield: Listsurfaces List patchesandListlinks. The pro-
make extensive use of dynamically allocated recursive datadram uses 127MB of memory.
structures (lists, Btrees, quad-trees..). The selected applica- The programs are compiled using the C MipsPro com-
tions spend between 15% and 80% of their user time wait- piler, with the most aggressive optimizations: “cc -
ing for memory accesses. Ofast=1P27 -LNO -IPA’, except when profiling witbsrun
We chose Health and Tsp, two Olden benchmarks [18, 5]which does not support aggressive optimizations. Raytrace
also used to study data structure prefetching [14], Jigsaw,was compiled with “cc -O3 -n32 -R10000 -mips4” because
a WPI benchmark used to test virtual memory swapping results are wrong when optimizations are too aggressive.

www.manaraa.com

4.3. Optimization process is usually done by standard allocation libraries. For exam-
ple, 34.73% of memory is saved tealth figure 8.
As a first step, profiling is used to determine source code

lines generating large number of cache misses. We use o gy Evolution ofstream and Memory ;
Speedshdg ssrunandprof tools. Optimization of the data e

structure(s) referenced by these code lines is done manu-;z:p — core
ally. That is manual search of the most referenced fields us- % J '
ing the profiles, reorganization and interleaving of the struc- *** AowESP IO e Rayradb 3% Radiosty

tures and replacement ofallocsandfree
Figure 8. ialloc slightly increases the I-stream

4.4. Performance Results and generally save memory over malloc.

Applying our data layout enhancements leads to signifi-
cant performance increase as illustrated on Figure 7.

The benchmarked applications have either poor L1, L2 4.5.
or TLB performance with their original layout as indicated
in the figure. For each benchmark, the miss reduction is The speedups and miss ratio improvements reported pre-
illustrated for the components of the memory hierarchy that Viously were measured using the same input set for both
have a significant influence on the execution time. TheseProfiling and optimizing. This may lead to biased results
miss reductions can be quite dramatic: for instance missif other input sets do not have the same dominant access
ratios are improved by over 90% for Radiosity and Jigsaw. Patterns on data structures.
These two programs declare large data structure and use a In this section, we analyze the sensitivity of our data lay-
small number of fields in each instance. In that case cachePut optimizations to the input sets.
line space is completely wasted. Our intuition is that the optimizations we propose should

Speedups ranging from 1.08 to 2.52 were observed. No-be valid for any input set, because the global reference pat-
tice that high speedups are obtained when the bottleneck igerns of an algorithm over a data structure in an application

the TLB or the L2 Cache, where a miss costs from 68 to 75 is I|ke|y to be very similar with different input sets. Even if
cycles. the data stored in the structures change, the portions of code

used to access the instances of the structure do not change.
Since field references are statically encoded in the program
by the compiler, the optimized structure layout is also likely

to be adapted to other data sets for the profiled routines.

Independence of the input set

Jigsaw Raytrace Radiosity

Millions of misses

Input sets To verify this assertion, we tried several dif-
ferent input sets for all our applications. Input parameters
were changed for Health and TSP, while for Jigsaw, Ray-

Healn TSP TSP Jgeaw Rayace Radosty Radiosiy trace and Radiosity we changed the input files.
For Jigsaw, we used different puzzle files, generated au-
Figure 7. Data layout provides signifi- tomatically by a separate program provided with the bench-
cant cache miss reduction which induce marks. The 64x64 puzzle is the default puzzle of the bench-
speedups. mark.

For Raytrace we built a new scene with over 10000
spheres organized as two planes facing each other. The rays
shooting should have a completely different behavior than

Other performance factors Changing the data layout with balls4.env because the scene is organized quite differ-
by the usage of thilloc library slightly changes the type ently.

and the number of instructions executed. Figure 8 shows For Radiosity we used a scene with 4 classrooms facing a
that this variation is minor, therefore it cannot affect the ex- patio. This scene holds 5 rooms instead of 213, but each one

ecution time significantly for our benchmarks. is much more furnished (more chairs, tables, and lights...).
By interleaving data in memory, we also tend to save up

memory compared to malloc. Using arenas is more cost-

effective than tying an 8-byte tag to each allocated block, aSExperlmentaI results We first check for the programs

that the memory bound routines do not radically change
3These cost estimations are those use&6ys perfextool. with other input sets. For example wifRadiosity three

www.manaraa.com

05 EmmUser
— 2
—O— Speedup

50000rig 5000 opt

1000000 1000000
orig opt

10000000 10 000 000
orig opt

[User

—0— Speedup

__Health

Oor—0

—1L24TLB

66000rig 6600 opt

61000rig 6100 opt

46000rig 4600 opt

Normalized time

Puzzle

&ﬂ

64x64 orig 64x64 opt

78x780rig 78x78 opt

100x100 orig 100x100 opt

Normalized time
1

Floor-2-orig Floor-2-0pt Floor-4-or

Radiosity

rig Floor-d-opt

Class-2-0rig ~ Class-2-opt

Normalized time

Raytrace

user
— 2
—O—Speedup

balls4 orig ballsd opt

Figure 9. Speedup with different input files.

layout optimizations (padding) and computation reordering
(loop transformations) to improve cache behavior.

On the other hand, few studies have addressed improving
the cache behavior of applications using heterogeneous data
structures.

Prefetching has been studied for self-referencing data
structures [14, 13]. Prefetching can improve global per-
formance of the applications. However it can also saturate
memory bandwidth and finally become counter-productive.
Our approach is contrarioto improve the spatial locality
of the program.

Most works to improve the performance of applications
using dynamically allocated data have focussed on optimiz-
ing the allocation libraries to provide efficient memory man-
agement. The first approach was to develop libraries man-
aging memory reuse with efficient algorithms [20]. Zorn
et al. analyzed the locality of dynamic allocation libraries
[10]. These codes often exhibit poor locality. New allo-
cations libraries such aSustomalloc[9] were proposed.
These studies focus on locality inside the allocation library,
but do not consider the subsequent accesses of the program
to the allocated data structures.

6. Conclusion

Delays wasted accessing the memory hierarchy are im-
pairing the performance on many applications. This diffi-
culty is likely to increase in the next decade [19, 3]. To
maximize cache performance, software locality optimiza-
tion techniques have been shown to be very efficient on ap-
plications working on numerical arrays [2]. However, many
applications do not use data arrays, but heterogeneous data
structures.

Two techniques may be used for improving data lay-
out. Field reorganization consists in regrouping together
the most frequently used fields of a structure to fit them in a

source lines generate 79.7% and 92.8% of the misses resingle cache line. This may reduce cache line space wasted.
spectively for theBalls4andNewinput files.

Figure 9 illustrates speedups for all the benchmarks. Es-used in a structure, not enough to fill a cache line. There-

However there are generally only a few fields frequently

timated time lost on cache misses is also illustrated. Time isfore we propose instance interleaving. It consists in group-
normalized, because runtimes vary from less than a secondng the most frequently used fields of several instances to fit
to days, depending on the application and the inputset. them into the same cache line.

Results are consistent. The optimizations increase the The first contribution of this paper is to show that com-
performance by reducing the time lost in the memory hi- bining field reorganization with instance interleaving can be
erarchy. Furthermore, the larger the working set and the an efficient way to improve the memory behavior and the
execution time, the higher the benefit from data layout opti- overall performance of the application. On our benchmark
mizations. set of five C applications making a heavy usage of dynami-
cally allocated data structures, speedups ranging from 1.08
to 2.53 are obtained. Miss ratios (L1, L2 or TLB depending
on the application) are reduced by 35% to 96%.

However, instance interleaving has no natural language

Scalar data layout optimizations were studied in [21, 16]. support in C. The second contribution of this paper is the
Many studies surveyed in [1] have addressed numeric arraydesign ofialloc. It is a dedicated memory allocation li-

5. Related works

www.manaraa.com

brary built to support instance interleaving of dynamically
allocated structures. When usiigloc, optimizations can

be implemented on C code with minimum source changes:
only structure declarationgee()andmalloc()functions are
touched.

At present, the automatic detection of the most fre-
guently used fields of a structure is beyond the possibility
of current compiler technology. Therefore, data layout op-
timization must be done by the programmer by profiling the [11]

applications to detect and regroup the most frequently used
fields of the data structures. This might be seen as a major

(9]

[10]

limitation. However few structures need to be interleaved [12]
in a program, since few structure influence the program'’s
reference patterns [10]. Furthermore, from our experiments
we find that the most frequently used fields of the data struc-
tures do not change when we run the application with dif-
ferent input sets. We think that aalloc-like allocation li-

brary associated with some specific profiler dedicated for
heterogeneous data structures might be of great help in a[14]
performance tuning toolbox for general applications.

Acknowledgements We would like to thank M. Carlisle
for giving us access to his benchmarks, as well as D. Men-
eveaux for his radiosity program.

References

(1]

(2]

(3]

(4]

(5]

D. F. Bacon, J.-H. Chow, and D. R. Ju. A compiler frame-
work for restructuring data declarations to enhance cache
and tlb effectiveness.Proceedings of CASCON'94Nov.
1994.

D. F. Bacon, S. L. Graham, and O. J. Sharp. Compiler trans-
formations for high-performance computingCM Comput-

ing Surveys26(4):345-420, Dec. 1994.

D. Burger, J. R. Goodman, and A. Kagi. Quantifying mem-
ory bandwidth limitations of current and future micropro-
cessors23rd International Symposium on Computer Archi-
tecture 1996.

D. C. Burger, J. R. Goodman, and A. Kagi. The declining
effectiveness of dynamic caching for general purpose multi
processor. Technical Report 1261, University of Winscon-
sin, http://www.cs.wisc.edu/dalileo, 1995.

M. C. Carlisle and A. Rogers. Software caching and com-
putation migration in olden. Technical Report TR-483-95,
Princeton University, 1995.

[6] J.J.Dongarra and D. W. Walker. Software libraries faelar

(7]

(8]

algebra computation on high performance computers. Tech-
nical Report ORNL TM-12404, Oak Ridge National Labo-
ratory, http://www.nhse.org/hpc-netlib/, Aug. 1993.

D. Finkel, R. E. Kinicki, A. John, B. Nichols, and S. Rao.
Developing benchmarks to measure the performance of the
mach operating system. WSENIX Mach Workshopages
83-100, 1990.

D. Finkel, R. E. Kinicki, J. A. Lehmann, and J. CaraDonna.
Comparison of distributed operating system performance

[13]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

using the wpi benchmark suite. Technical Report WPI-CS-
TR-92-2, Worcester Polytechnic Institute, 1992.

D. Grunwald and B. Zorn. Customalloc: Efficient syn-
thetized memory allocatorsSoftware Practice & Experi-
ence 23(8):851-869, Aug. 1993.

D. Grunwald, B. Zorn, and R. Henderson. Improving the
cache locality of memory allocationProceedings of the
ACM SIGPLAN’93 Conference on Programming Language
Design and Implementatio28(6):177, July 1993.

A. S. Huang and J. P. Shen. A limit study of local memory
requirements using value reuse profil@8th Annual Inter-
national Symposium on MicroarchitectyurE995.

A. S.Huang and J. P. Shen. The intrinsic bandwidth megui
ments of ordinary programs. [Fth symposium on Architec-
tural Support for Programming Languages and Operating
Systemgspage 105, 1996.

M. H. Lipasti, W. J. Schmidt, S. R. Kunkel, and R. R.
Roediger. Spaid: Software prefetching in pointer and call-
intensive environments28th Annual International Sympo-
sium on Microarchitecture1995.

C.-K. Luk and T. C. Mowry. Compiler-based prefetching
for recursive data structures. Tith symposium on Architec-
tural Support for Programming Languages and Operating
Systems1996.

D. Meneveaux, K. Bouatouch, and E. Maisel. Memory man-
agement schemes for radiosity computation in complex en-
vironment. P11097, IRISA, ftp.irisa.fr/techreports/B3BI-
1097.ps.gz, 1997.

P. R. Panda, N. D. Dutt, and A. Nicolau. Memory data orga-
nization for improved cache performance in embedded pro-
cessor applicationsACM Transactions on Design Automa-
tion of Electronic Systemg&(4):384-409, Oct. 1997.

D. Patterson and J. Hennessomputer Architecture: A
Quantitative Approach, 2nd ecchapter 5, Memory hierar-
chy design. Morgam-Kaufman, 1996.

A. Rogers, M. Carlisle, J. Reppy, and L. Hendren. Sup-
porting dynamic data structures on distributed memory ma-
chines.ACM Transactions on Programming Languages and
Systemgsl7(2), Mar. 1995.

A. Saulsbury, F. Pong, and A. Nowatzyk. Missing the mem-
ory wall: The case for processor/memory integration. In
23rd International Symposium on Computer Architecture
1996.

A. S. Tanenbaum.Modern Operating Systemshapter 3.
Morgan Kauffmann, 1995.

D. N. Truong, F. Bodin, and A. Seznec. Accurate datalayo
into blocks may boost cache performance. Technical Re-
port 1000, IRISA/INRIA, ftp.irisa.fr /techreports/1998/¢
1000.ps.gz, 1996. presented at 8econd Workshop on In-
terraction between Compilers and Computer Architecture
San Antonio, TX, Feb. 1997.

S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta.
The splash-2 programs: Characterization and methodologi-
cal considerations. In ACM, edito2nd Annual Interna-
tional Symposium on Computer Architectupages 24-36,
June 1995.

www.manaraa.com

