
www.manaraa.com

Improving cache behavior of dynamically allocated data structures

Dan N. Truong
dtruong@irisa.fr

François Bodin
bodin@irisa.fr
IRISA - INRIA

Campus de Beaulieu
35042 Rennes, CEDEX

France

André Seznec
seznec@irisa.fr

Abstract

Poor data layout in memory may generate weak data lo-
cality and poor performance. Code transformations such as
loop blocking or interchanging and array padding have ad-
dressed this issue for scientific applications. However many
generalist applications do not use data arrays, but dynami-
cally allocated heterogeneous data structures.

In this paper, we explore two data layout techniques for
dynamically allocated data structures: field reorganization,
and instance interleaving. The application of these tech-
niques may be guided by program profiling. This allows
significant cache behavior improvements on some applica-
tions.

To support instance interleaving, we developed a spe-
cific memory allocation library called ialloc. An ialloc-like
library may be of great help in a toolbox for performance
tuning of general-purpose applications.

1. Introduction

Recent studies have analyzed the efficiency of caches.
If cache usage was optimal, only small cache sizes would
be necessary [11], and the memory bandwidth necessary
would be kept low [12]. However, in practice, caches are
greatly under-exploited [4], and memory bandwidth will be
a limiting factor for processor performance because of lim-
ited chip pin-out [3]. Meanwhile, all efforts to better exploit
effective cache space and available memory bandwidth are
worth to be explored. Changing the reference patterns to
memory locations modifies cache behavior. These changes
can either be done by reordering the memory accesses of the
application through code transformations, or by changing
the layout of referenced data in memory. These techniques
have been widely explored for numerical scientific appli-
cations. Program developers can rely on efficient cache-
conscious numeric libraries [6] or on loop transformations

[2, 17] (code transformations) or array padding [1] (data
layout techniques) to improve locality.

However generalist applications may also require high
performance and can suffer from poor cache behavior. In
this paper, we focus on applications using heterogeneous
data structures. Instances of structures are often allocated
dynamically, either organized as self-referencing data struc-
tures (lists, B-trees, quad trees...), or as arrays of structures.
Such applications will not benefit from the techniques de-
veloped for arrays to improve cache locality. Data addresses
are not computed using loop indexes, so loop transforma-
tions cannot be used. Code transformations are unlikely to
generate stride one memory accesses for instances of struc-
tures.

In this paper, we explore two possible data layout tech-
niques to improve locality for heterogeneous data structures
allocated dynamically.� Field reorganization : fields of a data structure often

referenced together are grouped together in the data
structure declaration to fit in the same cache line.� Instance interleaving : identical fields of different in-
stances of a data structure often referenced together
are grouped together dynamically. That way, rarely
used fields are moved away from frequently used
fields, and won’t be loaded in the cache.

The C language does not allow direct implementation of
the second data layout optimization. This leads us to de-
velop a dedicated allocation library calledialloc to support
the interleaving optimization. The usage ofialloc guided by
profiling is shown to allow significant performance gain on
some applications using extensively dynamically allocated
data structures. Theialloc library might be a very valuable
piece in a toolbox for performance tuning general applica-
tions.

The remainder of the paper is organized as follows. Sec-
tion 2 presents in more details field reorganization and in-

www.manaraa.com

stance interleaving. Section 3 presents the dedicated mem-
ory allocation library ialloc. Section 4 shows our data
layout experimentation usingialloc. We overview related
works in section 5. Section 6 concludes this study.

2. Data layout

Ideally, data elements most often referenced together
should lie into the same cache blocks [16, 21]. Further-
more, memory blocks frequently used together must map
into distinct cache sets. To achieve this one would like to
take advantage of properties of the programs and of the data
structures to choose the data layout.

Locality properties can be found for dynamically allo-
cated instances of data structures because the program man-
ages instances anonymously using pointers. A data struc-
ture is generally made of a small number of fields (from two
to a few dozens). Every instance holds these fields. Most
instances are referenced through the same code portions.
Therefore, the dominant reference patterns are usually the
same for most instances of the structure. The dominating
reference pattern is usually caused by a very small portion
of the program [17]. A specific reference pattern only ob-
served for a few instances of the structure can be ignored. It
will not influence overall program performance. Therefore
to improve the performance of a program, we must adapt the
layout of the instances in memory to the dominating refer-
ence patterns.

In this section, we describe field reorganization and in-
stance interleaving, two techniques that can be used to mod-
ify the layout of data structures in memory.

2.1. Field reorganization

In many applications, the most active parts of the code
access only a few fields in each instance of a structure.
These fields can be regrouped together to fit into the fewest
number of memory blocks.

Figure 1 illustrates such a reorganization in C language
to regroup fieldsA andC. The declaration of the data struc-
ture is just changed, modifying the memory layout of the
fields of the instances. We call this optimization field reor-
ganization.

Field reorganization can have a significant impact on
cache performance if the structure spans over many cache
blocks. When an instance is referenced, fewer memory
blocks are loaded in the cache. This not only takes advan-
tage of cache line prefetching, it also reduces cache pollu-
tion. Repeated over many instances, this optimization alone
can provide visible speedups.

Unfortunately, programs usually don’t use such large
data structures. Therefore field reorganization alone be-
comes useless, because reorganizing the fields does not

Struct S {
 TypeA A;
 TypeB B;
 TypeC C;
 TypeD D;
}

Struct S * Pt;

A DCB

Instance of S

Original declaration :

Struct S {
 TypeA A;
 TypeC C;
 TypeB B;
 TypeD D;
}

Struct S * Pt;

Field reorganization :

Instance of S

memory DA C B

Figure 1. Field reorganization is done by
changing the declaration order of the fields
of the structure.

change the cache line reference pattern. To solve this, field
reorganization can be combined with instance interleaving.

2.2. Instance interleaving

The dominating reference pattern of a program often ac-
cesses only a few fields in each instance, not enough to fill a
cache line. Instead of filling a memory block with rarely
used fields of the instance, one may want to fill it with
frequently used fields of other instances. Therefore, these
fields must be laid out contiguously in memory.

Instance I1

DA C B

Instance I2

DA C B

Instance I3

DA C B

Instance I4

DA C B

DA C B DA C B DA C B DA C B

Line size

Interleaving

Cache size

Figure 2. Interleaving of identical fields of
many instances of a structure.

To achieve this, we propose to interleave the instances
of the data structure as illustrated in Figure 2. We assume
that the fieldsA andC are the most frequently used fields
of the structure. We group them in the first chunk, while we
groupB andD in the second chunk. The chunks (A,C) of a
few instances are grouped together to fill-up a cache block.

2

www.manaraa.com

Since they are more likely to be referenced than the second
chunks (B,D) , cache line reuse is likely to improve.

We actually interleave many more instances. We fill a
whole segment of memory at least as large as the cache size
with chunks (A,C). Since these chunks are all likely to be
used, they should not map to the same cache sets. Organiz-
ing them contiguously in memory reduces the risk of cache
interference to eliminate conflict misses.

It has been shown that instances allocated at the same
time tend to be used at the same time [10]. By interleaving
together the frequently used chunks of instances allocated
consecutively, we prevent interferences between these in-
stances and we increase the chances of taking advantage of
cache line prefetching.

Struct S {
 TypeA A;
 TypeC C;
 char Pad1[Intl];
 TypeB B;
 TypeD D;
 char Pad2[Intl];
}

A C DBPad1[Intl] Pad2[Intl]

Cache line size

Figure 3. Interleaving is done by adding
padding in the data structure declarations.

Implementation through structure declaration In-
stance interleaving was not foreseen when programming
languages were defined. Therefore, they do not provide any
support for it.

However, in C language data structure declarations may
be tweaked to enable instance interleaving. Figure 3 illus-
trates this and how it affects the layout of an instance in
memory (color code of the instances is the same as in Fig-
ure 2). A padding array is inserted after each interleaved
chunk of the structure (chunks(A;C) and(B;D)).

Our goal is to reuse the unused space within the padding
arrays to allocate and interleave the chunks of other in-
stances of the structure. Every chunk must have the same
size to allow the compiler to manage address computation.
The set of least frequently used fields of the structure is di-
vided into several equally sized chunks as needed.

Allocation within the padding structure is not directly
supported by the C language. The new memory allocation
library calledialloc, presented in the next section was de-
veloped for this purpose.

3. Ialloc: an allocation library for instance
interleaving

Instance interleaving is natural neither for declaration
nor allocation for programming languages like C. More-
over, instance interleaving in likely to be used as a final per-
formance tuning step of an application development: only
minimum source code modification is then tolerated.

In order to assist the developer in using instance inter-
leaving in this final performance tuning step, we developed
a specific allocation library, calledialloc. Ialloc hides from
the user most of the complexity of instance interleaving
management while its use incurs very limited and localized
source code modification.

In this section, we present the implementation of theial-
loc library and its current limitations.

3.1. Implementation

The data structures that need to be allocated withialloc
are only those which are most frequently used and which
have also the most instances allocated.

Ialloc allocates arenas Our library ialloc reserves and
manages special areas in the heap called arenas for each
specific data structure it handles. An arena is a contiguous
portion of the heap reserved for the allocation of specific
data sizes. The concept of arenas has already been used in
the Gnu-C allocation library to improve the locality of the
library [10].

Different structures are likely to have different interleav-
ing parameters. Therefore, an arena only holds instances
of a single data structure. We interleave a sufficient num-
ber of frequently used chunks to fill the cache size, so the
size of the arena is a multiple of the cache size. Each arena
is managed independently with a small header holding its
allocation table.

A C
heap

memory

Arena

DA C B DA C B DB

Header Free space

Fields of an instance

Cache size

Figure 4. Inner organization of an allocation
arena.

Figure 4 illustrates this. The two chunks(A;C) and

3

www.manaraa.com

(B;D) of the structure are interleaved. The arena is almost1
twice the size of the cache. The data structure is padded
with arrays, each slightly smaller than the cache size.

An arena usually holds a few thousand instances. There-
fore it is usually not large enough to accommodate all the in-
stances of a structure. Theialloc library manages a chained
list of arenas for each interleaved data structure. More are-
nas are allocated as needed. Each structure type is assigned
an index corresponding to its own chained lists of arenas.

3.2. Using ialloc

To use theialloc library, the programmer first modifies
the data structure declaration to reorganize the fields into
chunks and insert the padding arrays. Afterwards the user
replaces corresponding calls tomalloc()andfree()by calls
to ialloc() andifree(), ialloc’s allocation routines. Figure 6
shows the transformation necessary from the original code
sample shown in figure 5.

struct Sf
struct S * A;
int B;
int C;
int D;g;

struct S *SPtr;
..
SPtr = (struct S *) malloc(sizeof(S));
SPtr!A = NULL;
if (..) SPtr!B= ..
free(SPtr);
..

Figure 5. Sample original code.

Except for the calls tomallocandfree, all the references
to the structure are left unchanged.

To pass static structure layout information to the alloca-
tion library, we need to provide three arguments toialloc().
We give the typeS of the structure2 to tell it the size of
the structure and to handle casting automatically, the size
ChunkSizeSof the interleaved chunks, and the indexIndexS
chosen for that data structure type.

Adding padding in the declaration of the data structure
forces the compiler to generate correct addressing to the var-
ious fields of the padded structure. Theialloc library hides
the memory management and pointer arithmetic necessary
to allocate non-contiguous chunks within the padding of the
other instances.1The header doesn’t need to be duplicated.2ialloc() is actually adefine, which accepts directly the data type to
prevent the need to cast

#define IndexS 0
#define ChunkSizeS sizeof(A)+sizeof(C)
struct Sf

struct S * A;
int C;
Pad1[IntlS];
int B;
int D;
Pad2[IntlS];g;

struct S *SPtr;
..
SPtr = ialloc(S,ChunkSizeS,IndexS);
SPtr!A = NULL;
if (..) SPtr!B= ..
ifree(SPtr);
..

Figure 6. Sample optimized code.

These two optimization steps cannot be directly hidden
in C, because allocation must be handled dynamically by a
library while data structure layout and pointer arithmetic is
generated statically by the compiler.

Usage constraints The code transformation process
shown above is valid for recursive data structures (i.e. struc-
tures organized in chained lists, trees...). However, some
complications may arise, because static and dynamic layout
optimizations must interact and C Language doesn’t pro-
vide any support for that. Therefore layout optimization
cannot be transparent to C programmer.

We list some limitations when usingialloc below:� ialloc does not currently support arrays of data struc-
tures. The difficulty lies in how pointer arithmetic is done
by the C compiler. Let’s consider a reference to an element
of an array of structure likeTab[i]:A. Using our approach
to interleave this structure would necessitate extensive cast-
ing to allow correct array pointer arithmetic. This would
mean heavy code transformations.� Allocation of different types of structures at the same
malloc() call site cannot be handled directly, because our
library asks for an index for each structure type allocated.
This problem happens whenmalloc() is called within a
wrapper function, for example when the programmer han-
dles structure allocation himself or when he checks the cor-
rectness of the allocation process. This is the case in the
sources of the Gnu-C compiler. The wrapper function must
be removed before optimization.� Freeing of different structure types by the samefree().
The free() can be converted toifree() only if all instances
freed are allocated by theialloc library.

4

www.manaraa.com

� Interleaved structures cannot support assignations be-
tween instances without compiler support. Fields must be
copied explicitly one by one, i.e , ifP1 andP2 are point-
ers to interleaved instances of a structure, “�P1 = �P2;”
should be converted to “P1 ! A = P2 ! A;P1 ! B =P2 ! B;..’. This type of assignation is unlikely to be en-
countered in C, since it is legal only in ANSI-C compilers.
However it is encountered in C++ programs to initialize ob-
jects, but we can always overload the equal operator of the
interleaved classes.� Static allocation of interleaved structures should be
avoided since padding arrays use up a lot of space. If the
allocation library is bypassed, the padding space is wasted.
A solution is to convert the static instances of the structure
into dynamically allocated instances. However we never
met this difficulty in the experimentation we did, since static
allocation is rarely mixed with dynamic allocation.

In our experiments, we found that the biggest difficulty
with our ialloc library is its inadequation to handle directly
the allocation of arrays of structures. Their use is quite fre-
quent in large applications. The usage of wrapper allocation
functions is also occasionally a nuisance.

4. Experimentation

4.1. The target architecture

The programs benchmarked in this section were run as
monoprocessor tasks on an SGI Origin 2000 with 195MHz
R10000 processors. The L1 on-chip data cache is a 2
way set-associative non-blocking cache of 32KB, with 32B
lines. The L2 external cache has the same configuration but
is 4MB. The local memory of the node is made of 128MB
of SDRAM.

Statistics reported were gathered using SGI’sSpeedshop
package. It can count misses in all levels of the memory
hierarchy using hardware counters and computes an esti-
mation of the corresponding time penalties incurred.

4.2. Benchmark selection

Data layout optimizations are intended to provide per-
formance gains on applications with poor data locality and
large working sets. SpecInt95 benchmarks for instance do
not correspond to this class of applications. Therefore,
we gathered a few applications from different sources that
make extensive use of dynamically allocated recursive data
structures (lists, Btrees, quad-trees..). The selected applica-
tions spend between 15% and 80% of their user time wait-
ing for memory accesses.

We chose Health and Tsp, two Olden benchmarks [18, 5]
also used to study data structure prefetching [14], Jigsaw,
a WPI benchmark used to test virtual memory swapping

of the MACH OS kernel [7, 8], Raytrace, a program from
the Splash-2 parallel benchmark suite [22], and Radiosity, a
program developed at INRIA by Meneveaux et al. [15].

Characteristics of these applications are further detailed
below. For each application, we also present the optimiza-
tions that were performed on the data layout.� Health : “health 6 500”
Program simulating the Colombian health care manage-
ment. A simulation of patients transfers between the hospi-
tals of 1365 villages (

Pn=6�1n=0 4n) during 500 time cycles.
Four structures are used,village (a quad-tree),hospital, pa-
tient (patient’s data), andpatient list (nodes of a chained
list). We interleave the last two data structures fields by
fields: those have the most instances and are most often ref-
erenced. The program consumes 17MB of memory.� Tsp : “tsp 3276800”
Traveling salesman problem solved using the closest point
heuristic. The problem size is the traversal of over 3.27
million cities. We interleave the only data structure used (a
quad-tree) by chunks of eight bytes. Doubles are alone, but
pointers are grouped two by two. The program uses 193MB
of memory.� Jigsaw : “echo 100j jigsaw 100.out”
Solves a mathematical representation of a 100x100 2D-
jigsaw puzzle. Tiles are represented by a structure with 11
word-sized fields. Tiles are stored in a chained list. We in-
terleave the tiles field by field. The program uses 3.5MB of
memory.� Raytrace : “raytrace balls4.env”
Virtual image rendering using raytracing. We use the
balls4.env scene made of 7381 spheres reflecting on one
another and organized into a fractal shape. We modified
the balls4.env file to add “hugridsize 1”, to make the ap-
plication run longer. Many structures are used in this pro-
gram. We interleaved the structureobjectfield by field and
the structuresphereby regrouping 5 fields and separating
the last one. The program uses 40MB of memory.�Radiosity : “radiosity -i tt.gra -o tt -T 10 -A 1 -E 0.001
-N 1500 -s -m”
Virtual image rendering using hierarchical radiosity. The
program is built to render extremely large scenes. The in-
put is a scene made of 213 lightly furnished rooms, each
one is described in a separatenff file. This program uses
many structures. We interleave three structures field by
field: List surfaces, List patchesandList links. The pro-
gram uses 127MB of memory.

The programs are compiled using the C MipsPro com-
piler, with the most aggressive optimizations: “cc -
Ofast=IP27 -LNO -IPA”, except when profiling withssrun
which does not support aggressive optimizations. Raytrace
was compiled with “cc -O3 -n32 -R10000 -mips4” because
results are wrong when optimizations are too aggressive.

5

www.manaraa.com

4.3. Optimization process

As a first step, profiling is used to determine source code
lines generating large number of cache misses. We use
Speedshop’s ssrunandprof tools. Optimization of the data
structure(s) referenced by these code lines is done manu-
ally. That is manual search of the most referenced fields us-
ing the profiles, reorganization and interleaving of the struc-
tures and replacement ofmallocsandfree.

4.4. Performance Results

Applying our data layout enhancements leads to signifi-
cant performance increase as illustrated on Figure 7.

The benchmarked applications have either poor L1, L2
or TLB performance with their original layout as indicated
in the figure. For each benchmark, the miss reduction is
illustrated for the components of the memory hierarchy that
have a significant influence on the execution time. These
miss reductions can be quite dramatic: for instance miss
ratios are improved by over 90% for Radiosity and Jigsaw.
These two programs declare large data structure and use a
small number of fields in each instance. In that case cache
line space is completely wasted.

Speedups ranging from 1.08 to 2.52 were observed. No-
tice that high speedups are obtained when the bottleneck is
the TLB or the L2 cache, where a miss costs from 68 to 75
cycles3.

5SER�TIME�SPEEDUP

2.15

1.08
1.26 1.21

2.53

1

1.5

2

2.5

3

Health T.S.P. Jigsaw Raytrace Radiosity

-ILLIONS�OF�MISSES

39%
49% 53%

91%

35%

66%

96%

0

100

200

300

400

500

600

Health
TLB

TSP
L1

TSP
L2

Jigsaw
L1

Raytrace
L1

Radiosity
L1 x1000

Radiosity
L2 x1000

0%

20%

40%

60%

80%

100%Original

Interleaved

Reduction (%)

Figure 7. Data layout provides signifi-
cant cache miss reduction which induce
speedups.

Other performance factors Changing the data layout
by the usage of theialloc library slightly changes the type
and the number of instructions executed. Figure 8 shows
that this variation is minor, therefore it cannot affect the ex-
ecution time significantly for our benchmarks.

By interleaving data in memory, we also tend to save up
memory compared to malloc. Using arenas is more cost-
effective than tying an 8-byte tag to each allocated block, as3These cost estimations are those used bySGI’s perfextool.

is usually done by standard allocation libraries. For exam-
ple, 34.73% of memory is saved onhealth, figure 8.

%VOLUTION�OF�)STREAM�AND�-EMORY�CONSUMPTION

4.17%

-1.96%

11.10%

5.94%

34.73%

13.04%

-4.42%
-0.35%

4.72%
-0.24%

-5.00%

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

Health T.S.P. Jigsaw Raytrace Radiosity

Instruction stream increase

Memory saved

Figure 8. ialloc slightly increases the I-stream
and generally save memory over malloc.

4.5. Independence of the input set

The speedups and miss ratio improvements reported pre-
viously were measured using the same input set for both
profiling and optimizing. This may lead to biased results
if other input sets do not have the same dominant access
patterns on data structures.

In this section, we analyze the sensitivity of our data lay-
out optimizations to the input sets.

Our intuition is that the optimizations we propose should
be valid for any input set, because the global reference pat-
terns of an algorithm over a data structure in an application
is likely to be very similar with different input sets. Even if
the data stored in the structures change, the portions of code
used to access the instances of the structure do not change.
Since field references are statically encoded in the program
by the compiler, the optimized structure layout is also likely
to be adapted to other data sets for the profiled routines.

Input sets To verify this assertion, we tried several dif-
ferent input sets for all our applications. Input parameters
were changed for Health and TSP, while for Jigsaw, Ray-
trace and Radiosity we changed the input files.

For Jigsaw, we used different puzzle files, generated au-
tomatically by a separate program provided with the bench-
marks. The 64x64 puzzle is the default puzzle of the bench-
mark.

For Raytrace we built a new scene with over 10000
spheres organized as two planes facing each other. The rays
shooting should have a completely different behavior than
with balls4.env because the scene is organized quite differ-
ently.

For Radiosity we used a scene with 4 classrooms facing a
patio. This scene holds 5 rooms instead of 213, but each one
is much more furnished (more chairs, tables, and lights...).

Experimental results We first check for the programs
that the memory bound routines do not radically change
with other input sets. For example withRadiosity, three

6

www.manaraa.com

Radiosity

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

Floor-2-orig Floor-2-opt Floor-4-orig Floor-4-opt Class-2-orig Class-2-opt

Normalized time

0%

10%

20%

30%

40%

50%

60%

70%

User

L1+L2

Speedup

Raytrace

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

balls4 orig balls4 opt new orig new opt

Normalized time

0%

10%

20%

30%

40%

50%

60%

70%

user

L1+L2

Speedup

Puzzle

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

64x64 orig 64x64 opt 78x78 orig 78x78 opt 100x100 orig 100x100 opt

Normalized time

0%

5%

10%

15%

20%

25%

30%

35%

40%

user

L1+L2

Speedup

Health

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

6 600 orig 6 600 opt 6 100 orig 6 100 opt 4 600 orig 4 600 opt

Normalized time

0%

10%

20%

30%

40%

50%

60%

User

L1+L2+TLB

Speedup

Tsp

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

5000 orig 5000 opt 1 000 000
orig

1 000 000
opt

10 000 000
orig

10 000 000
opt

Normalized time

0%

2%

4%

6%

8%

10%

12%

User

L1+L2

Speedup

Figure 9. Speedup with different input files.

source lines generate 79.7% and 92.8% of the misses re-
spectively for theBalls4andNewinput files.

Figure 9 illustrates speedups for all the benchmarks. Es-
timated time lost on cache misses is also illustrated. Time is
normalized, because runtimes vary from less than a second
to days, depending on the application and the input set.

Results are consistent. The optimizations increase the
performance by reducing the time lost in the memory hi-
erarchy. Furthermore, the larger the working set and the
execution time, the higher the benefit from data layout opti-
mizations.

5. Related works

Scalar data layout optimizations were studied in [21, 16].
Many studies surveyed in [1] have addressed numeric array

layout optimizations (padding) and computation reordering
(loop transformations) to improve cache behavior.

On the other hand, few studies have addressed improving
the cache behavior of applications using heterogeneous data
structures.

Prefetching has been studied for self-referencing data
structures [14, 13]. Prefetching can improve global per-
formance of the applications. However it can also saturate
memory bandwidth and finally become counter-productive.
Our approach isa contrario to improve the spatial locality
of the program.

Most works to improve the performance of applications
using dynamically allocated data have focussed on optimiz-
ing the allocation libraries to provide efficient memory man-
agement. The first approach was to develop libraries man-
aging memory reuse with efficient algorithms [20]. Zorn
et al. analyzed the locality of dynamic allocation libraries
[10]. These codes often exhibit poor locality. New allo-
cations libraries such asCustomalloc[9] were proposed.
These studies focus on locality inside the allocation library,
but do not consider the subsequent accesses of the program
to the allocated data structures.

6. Conclusion

Delays wasted accessing the memory hierarchy are im-
pairing the performance on many applications. This diffi-
culty is likely to increase in the next decade [19, 3]. To
maximize cache performance, software locality optimiza-
tion techniques have been shown to be very efficient on ap-
plications working on numerical arrays [2]. However, many
applications do not use data arrays, but heterogeneous data
structures.

Two techniques may be used for improving data lay-
out. Field reorganization consists in regrouping together
the most frequently used fields of a structure to fit them in a
single cache line. This may reduce cache line space wasted.
However there are generally only a few fields frequently
used in a structure, not enough to fill a cache line. There-
fore we propose instance interleaving. It consists in group-
ing the most frequently used fields of several instances to fit
them into the same cache line.

The first contribution of this paper is to show that com-
bining field reorganization with instance interleaving can be
an efficient way to improve the memory behavior and the
overall performance of the application. On our benchmark
set of five C applications making a heavy usage of dynami-
cally allocated data structures, speedups ranging from 1.08
to 2.53 are obtained. Miss ratios (L1, L2 or TLB depending
on the application) are reduced by 35% to 96%.

However, instance interleaving has no natural language
support in C. The second contribution of this paper is the
design ofialloc. It is a dedicated memory allocation li-

7

www.manaraa.com

brary built to support instance interleaving of dynamically
allocated structures. When usingialloc, optimizations can
be implemented on C code with minimum source changes:
only structure declarations,free()andmalloc()functions are
touched.

At present, the automatic detection of the most fre-
quently used fields of a structure is beyond the possibility
of current compiler technology. Therefore, data layout op-
timization must be done by the programmer by profiling the
applications to detect and regroup the most frequently used
fields of the data structures. This might be seen as a major
limitation. However few structures need to be interleaved
in a program, since few structure influence the program’s
reference patterns [10]. Furthermore, from our experiments
we find that the most frequently used fields of the data struc-
tures do not change when we run the application with dif-
ferent input sets. We think that anialloc-like allocation li-
brary associated with some specific profiler dedicated for
heterogeneous data structures might be of great help in a
performance tuning toolbox for general applications.

Acknowledgements We would like to thank M. Carlisle
for giving us access to his benchmarks, as well as D. Men-
eveaux for his radiosity program.

References

[1] D. F. Bacon, J.-H. Chow, and D. R. Ju. A compiler frame-
work for restructuring data declarations to enhance cache
and tlb effectiveness.Proceedings of CASCON’94, Nov.
1994.

[2] D. F. Bacon, S. L. Graham, and O. J. Sharp. Compiler trans-
formations for high-performance computing.ACM Comput-
ing Surveys, 26(4):345–420, Dec. 1994.

[3] D. Burger, J. R. Goodman, and A. Kägi. Quantifying mem-
ory bandwidth limitations of current and future micropro-
cessors.23rd International Symposium on Computer Archi-
tecture, 1996.

[4] D. C. Burger, J. R. Goodman, and A. Kägi. The declining
effectiveness of dynamic caching for general purpose multi-
processor. Technical Report 1261, University of Winscon-
sin, http://www.cs.wisc.edu/g̃alileo, 1995.

[5] M. C. Carlisle and A. Rogers. Software caching and com-
putation migration in olden. Technical Report TR-483-95,
Princeton University, 1995.

[6] J. J. Dongarra and D. W. Walker. Software libraries for linear
algebra computation on high performance computers. Tech-
nical Report ORNL TM-12404, Oak Ridge National Labo-
ratory, http://www.nhse.org/hpc-netlib/, Aug. 1993.

[7] D. Finkel, R. E. Kinicki, A. John, B. Nichols, and S. Rao.
Developing benchmarks to measure the performance of the
mach operating system. InUSENIX Mach Workshop, pages
83–100, 1990.

[8] D. Finkel, R. E. Kinicki, J. A. Lehmann, and J. CaraDonna.
Comparison of distributed operating system performance

using the wpi benchmark suite. Technical Report WPI-CS-
TR-92-2, Worcester Polytechnic Institute, 1992.

[9] D. Grunwald and B. Zorn. Customalloc: Efficient syn-
thetized memory allocators.Software Practice & Experi-
ence, 23(8):851–869, Aug. 1993.

[10] D. Grunwald, B. Zorn, and R. Henderson. Improving the
cache locality of memory allocation.Proceedings of the
ACM SIGPLAN’93 Conference on Programming Language
Design and Implementation, 28(6):177, July 1993.

[11] A. S. Huang and J. P. Shen. A limit study of local memory
requirements using value reuse profiles.28th Annual Inter-
national Symposium on Microarchitecture, 1995.

[12] A. S. Huang and J. P. Shen. The intrinsic bandwidth require-
ments of ordinary programs. In7th symposium on Architec-
tural Support for Programming Languages and Operating
Systems, page 105, 1996.

[13] M. H. Lipasti, W. J. Schmidt, S. R. Kunkel, and R. R.
Roediger. Spaid: Software prefetching in pointer and call-
intensive environments.28th Annual International Sympo-
sium on Microarchitecture, 1995.

[14] C.-K. Luk and T. C. Mowry. Compiler-based prefetching
for recursive data structures. In7th symposium on Architec-
tural Support for Programming Languages and Operating
Systems, 1996.

[15] D. Meneveaux, K. Bouatouch, and E. Maisel. Memory man-
agement schemes for radiosity computation in complex en-
vironment. PI 1097, IRISA, ftp.irisa.fr/techreports/1996/PI-
1097.ps.gz, 1997.

[16] P. R. Panda, N. D. Dutt, and A. Nicolau. Memory data orga-
nization for improved cache performance in embedded pro-
cessor applications.ACM Transactions on Design Automa-
tion of Electronic Systems, 2(4):384–409, Oct. 1997.

[17] D. Patterson and J. Hennessy.Computer Architecture: A
Quantitative Approach, 2nd ed., chapter 5, Memory hierar-
chy design. Morgam-Kaufman, 1996.

[18] A. Rogers, M. Carlisle, J. Reppy, and L. Hendren. Sup-
porting dynamic data structures on distributed memory ma-
chines.ACM Transactions on Programming Languages and
Systems, 17(2), Mar. 1995.

[19] A. Saulsbury, F. Pong, and A. Nowatzyk. Missing the mem-
ory wall: The case for processor/memory integration. In
23rd International Symposium on Computer Architecture,
1996.

[20] A. S. Tanenbaum.Modern Operating Systems, chapter 3.
Morgan Kauffmann, 1995.

[21] D. N. Truong, F. Bodin, and A. Seznec. Accurate data layout
into blocks may boost cache performance. Technical Re-
port 1000, IRISA/INRIA, ftp.irisa.fr /techreports/1996/PI-
1000.ps.gz, 1996. presented at theSecond Workshop on In-
terraction between Compilers and Computer Architecture,
San Antonio, TX, Feb. 1997.

[22] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta.
The splash-2 programs: Characterization and methodologi-
cal considerations. In ACM, editor,22nd Annual Interna-
tional Symposium on Computer Architecture, pages 24–36,
June 1995.

8

